

Manuel de programmation simplifié M2

Système m2 de Surveillance, de Commande et d'Alarme.

m2

ADAP-KOOL[®] Commandes frigorifiques

REFRIGERATION AND AIR CONDITIONING

CHOIX DE LA LANGUE
NOM DU SITE4
PARAMETRAGE DES POINTS
ECRAN PRINCIPAL
ECRAN CACHE
IMPRESSION RELEVES / GRAPHES7
LOGIQUE D'ALARME
CODE D'ACCES
ANNEXE10
LA LOGIQUE D'ALARME EN DETAIL
PRECISION DES SONDES
Thermistance (sonde type 1.2.3)12
PT1000 (sonde Aks 11 . 12 . 21)12
Préconisations de cablage12
F.A.Q14
M2 LENT ET PAS D'IMPRESSION14
EN CAS DE COUPURE DE COURANT14
REINITIALISER UN M214

<u> Danfoss</u>

CHOIX DE LA LANGUE

Pour modifier la langue et choisir le français il faut aller dans « Setup Menu », en appuyant plusieurs fois sur la flèche du bas 🔽 puis sur 🗢 pour valider une fois le menu sélectionné.

Le code clavier par défaut est 291 :

O où O pour changer la valeur, O ou O pour changer de caractère et O pour valider.

Appuyer sur 👽 jusqu'au menu « Choose Language » puis valider par 🗨.

me	SETUP MENU	14125	:41
止]	Log/Chart Setup	H-]	.#L
	Alarm Action Setup	ļu-	
1	Modem Dialout Setup	ļa-	
	Curve Table Setup	ļu-	
	Modem Configuration	ja-	
Ŧ	Choose Language	•	di.

Sélectionner la langue désirée, ici le français puis valider (O puis O).

m2	Languages	1	4:2	5	:56
Í	Ø 68	•		1	
	<u>1 F B</u>				
	2 DE				
	3 ML				
					1000
4					dh

Pour sortir du menu il faut appuyer sur 🔍

<u>Danfoss</u>

NOM DU SITE

Dans le « Menu Configuration », mot de passe 291, sélectionner le menu « Nom du site ».

Paramétrer le nom du site, O ou O pour modifier un caractère, O ou O pour supprimer ou rajouter un caractère et O pour valider une fois le nom de l'installation paramétrée.

Choisir ensuite l'«Unité Température » et le «Format Date», O ou O pour changer la valeur et O pour valider.

Pour sortir du menu il faut appuyer sur 🔍

ASTUCE : combinaison de touches pour effacer les caractères 🥸 + 💽

PARAMETRAGE DES POINTS

ECRAN PRINCIPAL

Sélectionner le menu «Paramétrage des points».

m2	MENU CONFIGURATION	14:35	:38
	Nom du site	10	
	<u>Paramétrage des points</u>		
	Horaires Dégivrages	<u> 0-</u>	
	Codes d'accès	ja-	
	Panamètres relevés/graphes	m-	
Ŧ	Logique d'alarme	<u> </u> 11-	dh.

Il est possible de programmer jusqu'à 99 points sur un m2 (attention à la durée d'enregistrement, cf. page 8)

Par défaut, les points 1 à 16 correspondent aux entrées du M2, les points 17 à 32 aux entrées de la première extension (adresse 1), les points 33 à 48 aux entrées de la deuxième extension (adresse 2) et ainsi de suite jusqu'à l'entrée 99 ou l'extension 8.

Remarque : Il est possible de modifier l'affection des points à partir de l'écran caché.

	Paramétra	ge de	es Points	k
Numéro	1 Nom	CF F	R LEGUMES	5
Type	So2)Unité	Ľ.	Pt Deg	ivr. Ø
Alarmes	locales	C	ptionsIm	pression
Haut	8.0 Délai	6.0	Relevé	Manche
Bas	0.0 Action	n 1	Graphe	Manche

Pour chaque point à programmer il faut définir les paramètres suivants :

- « Nom » : définir son nom, O ou pour modifier de caractère, O ou pour changer de caractère
- « Type » :
 - o Arr : point non utilisé
 - So2 : sonde thermistance de type 2 (-40/+40 °C)
 - o RTD : sonde PT1000 (Attention aux longueurs de câble, cf. page14)
 - o **enF** : défaut technique, ouvert en alarme (existe en enO)
 - o **dno** : top de dégivrage, contact fermé en dégivrage (existe en dnF)
 - EKC : régulateur de type EKC
 - o **420** : capteur 4-20 mA

ATTENTION : (déplacer les cavaliers avant le raccordement du capteur)

- « Unité » : mettre C pour une température (°C)
- « Pt Degivr. » : si une entrée du M2 est utilisée comme information de dégivrage, il faut en indiquer le numéro dans ce champs afin de masquer les alarmes durant la période de dégivrage

<u> Danfoss</u>

- « Alarmes locales » ou « Alarmes distantes » : à définir comme « distantes » si le type de source est un EKC, autrement laisser « locales », dans ce cas le m2 crée les alarmes
- « Haut » : seuil d'alarme température trop haute, si « Alarmes locales »
- « Bas » : seuil d'alarme température trop basse, si « Alarmes locales »
- « Délai » : temporisation d'alarme en minutes, si « Alarmes locales »
- « Action » : action d'alarme, par exemple 1 pour les défauts positifs et 2 pour les négatifs (cf logique d'alarme)
- « Relevé » : mettre « Marche » pour autoriser une impression manuelle et automatique
- « Graphe » : mettre « Marche » pour autoriser une impression manuelle et automatique

ECRAN CACHE

En gardant appuyé quelques secondes sur la touche 🗢, une seconde page apparaît avec des réglages étendus.

Paramétrage des	s Points	
Numéro 1 Nom CF FR	LEGUMES	
Type source (LOCAL)	Y Maxi	Ø.
Adresse ext	Y Mini	- 40
Type d'entrée RESISTCE	4 mA =	
Numéro entrée 1	20mA =	

- « Type source » :
 - o Local : sonde ou contact raccordé directement sur le M2
 - Echelon : régulateur EKC raccordé sur le bus Lon
 - o T-party : sonde ou contact raccordé sur un M2+ ou un BBM
- « Adresse ext. » : adresse du régulateur ou de l'extension si le type de source est Echelon ou T-party
- « Type d'entrée » :

0

- Resistce : une sonde de type thermistance, S02, doit être raccordée
- PT1000 : une sonde de type PT100 est raccordée
- o Digital : un contact sec est raccordé
 - Courant : l'entrée est utilisée pour du 4-20 mA

ATTENTION : (déplacer les cavaliers avant le raccordement du capteur)

- « Numéro entrée » : numéro de l'entrée du M2, du M2+ ou du BBM, sur laquelle est raccordée la sonde ou le contact
- « Y Maxi » : laisser 0
- « Y Mini » : laisser 40
- « 4mA » : valeur pour 4mA , si « Type d'entrée » = « Courant »
- « 20mA » : valeur pour 4mA , si « Type d'entrée » = « Courant »

<u>Danfoss</u>

IMPRESSION RELEVES / GRAPHES

« Interval.Imp.Relevés » : intervalle d'impression des relevés températures, en heures.

« Heure Impress.Relevés » : heure et jour de la première impression, ensuite il y a une impression tous les « Interval.Imp.Relevés ».

« **Interval.Imp.Graphes** » : intervalle d'impression des courbes températures, 168h correspondant à une impression par semaine.

« Heure Impress.Graphes » : heure et jour de l'impression automatique des graphes.

« Fréqu.Echant.Graphes » : de cet intervalle dépend la durée de stockage dans le m2 des courbes de températures.

"Frágy Fabort Crophog»		ır / nb de points			
« Frequ.Echant.Graphes » intervelle Min.	20 p	ooints	80 points		
	2 Mb	6 Mb	2 Mb	6 Mb	
5	66	235	34	122	
10	132	471	68	244	
15	198	706	103	366	
20	264	941	137	488	

CONF	IGURATION	RELEVES/G	RAPHES
Interval.	.Imp.Relevé	s : (2 <u>4</u>)	: 0
Heure Imp	press.Reley	és: 9	Dimanche
Interval.	.Imp.Graphe	s : 168	h
Heure Imp	press.Graph	iest 12	Dimanche
Fréqu.Ech	hant.Graphe	s i S	min

D'après la capture d'écran ci dessus nous pouvons en déduire :

- une impression des relevés toutes les 24h00, la première impression étant dimanche à 9h00, puis tous les jours à 9h00.
- une impression des graphes une fois par semaine (168h = 1 semaine), chaque dimanche à midi.
- les températures sont enregistrées toutes les 3 minutes.

<u>)anfoss</u>

LOGIQUE D'ALARME

A l'aide de ce menu nous pouvons définir la logique d'alarme, nous permettant de différentier des défauts, par exemple les positifs et les négatifs.

On va définir :

- Relais 1 = défaut positif = action d'alarme 1
- Relais 2 = défaut négatif = action d'alarme 2

Il faut programmer la logique d'alarme des relais 1 et 2 de la manière suivante :

ME	NU	LOGIQUE	D'ALARM	1E			
Périphér.	:	Relais1)					
Nom	#	Dialout	Tem	рo	=	000	Sec
Action n°		12345678	Dur	ée.		999	Sec
Logique		10000000	Stop :	Si		Recon	1
1.1.	110		DEHEN	[
Périphér.	.	Relais2)					
Nom		Repeat	Temp	рo		Ø	Sec
Action n°		12345678	Dur	ê e	10 10	999	Sec
Logique	=	01000000	Stop :	Si		Recor	1

« Tempo » : temporisation avant le basculement du relais

« **Durée** » : durée de basculement du relais, jusqu'à ce que la condition « Stop Si » soit remplie ou la temporisation écoulée (attention : 999 = infini)

« Stop si » : condition de retour du relais à l'état initial

- Recon =le relais revient à son état initial aussitôt que quelqu'un appuie sur le bouton ⁽²⁾. La sirène s'arrête
- Annul = le relais ne revient à son état initial, lors de l'appui sur le bouton W, que si tous les défauts ont disparu

Pour cette configuration, le réglage des autres périphériques ne doit pas être modifié (Buzzer, Flash, Lampe, Imprim).

Une alarme reconnue mais non annulée ne réapparaîtra pas sur le M2.

Pour une explication plus détaillée de la logique d'alarme, cf Annexe A.

CODE D'ACCES

- « Code Maître » : code pour accès distant (minitel ou PC), frigoriste par défaut MIMON291
- « Code Utilisateur » : pour changer l'heure sur le m2, utilisateur final

par défaut 123

« Code clavier » : pour tout modifier directement sur le m2, frigoriste

par défaut 291

PI	ARAMETRAGE COU	DES	D'ACCES
Code	Maitre	11 10	(MIMON291)
Code	Utilisateur	:	123
Code	clavier		291
Code	Inhibition		Non
Pt		H	Non

PS : il ne faut jamais utiliser plusieurs fois le même mot de passe.

<u>Janfoss</u>

ANNEXE

LA LOGIQUE D'ALARME EN DETAIL

La logique d'alarme nous permet de configurer la façon dont une alarme va être signalée.

Pour cela nous avons à notre disposition :

- 1. Buzzer
- 2. Relais d'alarmes
- 3. Imprimante
- 4. Eclairage en rouge de l'écran

Nous avons 2 relais d'alarmes, nous pouvons donc transmettre 2 types d'alarmes différents. Par exemple défauts positif et négatif, ou bien défauts technique et température ...

Nous allons donc définir un numéro d'action pour chaque type de défaut, par exemple :

- Défaut positif > Action d'alarme 1 > Relais 1
- Défaut négatif > Action d'alarme 2 > Relais 2
- Défaut non grave > Action d'alarme 8 > Pas de relais

Une fois définie la logique d'alarme, il faut la configurer dans le « Menu Logique d'Alarme ».

Tableau récapitulatif de la logique d'alarme.

Par souci de clarté, tous les réglages ont été regroupés dans le tableau ci-dessous. Dans la réalité, il y a un écran de paramétrage pour chaque périphérique.

- Dans la colonne action d'alarme on retrouve 8 colonnes, correspondant aux 8 actions que l'on peut programmer. Dans notre cas, seules les colonnes 1,2 et 8 nous intéressent, il faut mettre 0 partout ailleurs.
- A chaque ligne correspond un périphérique.
- « TEMPO » = temporisation, en secondes, avant l'enclenchement du périphérique, pour retarder par exemple le buzzer à l'arrivée de l'alarme.
- « DUREE » = durée d'enclenchement du périphérique, 999 = temps infini, sauf si la condition <u>Stop Si</u> est remplie
- « STOP SI » = condition de déclenchement du périphérique
 - Recon =le périphérique revient à son état initial dés l'appui sur le bouton I
 - Annul = le périphérique ne revient à son état initial, lors de l'appui sur le bouton
 Que lorsque toutes les alarmes ont disparues

Périnhérique	Action d'alarme								Tempo	Durée	Stop Si
renphenque	1	2	3	4	5	6	7	8	(seconde)	(seconde)	
Relais 1	1	0	0	0	0	0	0	0	300	999	Recon
Relais 2	0	1	0	0	0	0	0	0	300	999	Recon
Buzzer	1	1	0	0	0	0	0	1	0	999	Recon
Flash *	1	1	0	0	0	0	0	1	0	999	Recon
Lampe	1	1	0	0	0	0	0	1	0	999	Annul
Imprime **	1	1	0	0	0	0	0	1	0	999	

- 1 : le périphérique est activé
- 0 : le périphérique n'est pas activé
- * : l'écran clignote en rouge jusqu'à la reconnaissance du défaut
- ** : lance une impression de l'arrivée du défaut

A l'intersection de la colonne 1 et de la ligne Relais 1 on trouve 1, ce relais sera donc activé en cas d'alarme positive.

A l'intersection de la colonne 1 et de la ligne Relais 2 on trouve 0 , ce relais ne sera donc pas activé en cas d'alarme positive.

De la même manière, si un défaut négatif apparaît sur le M2, d'action d'alarme 2, on a : 0 pour le relais 1 => le relais n'est pas activé, 1 pour le relais 2 => le relais est activé.

Pour l'action d'alarme 8, on va trouver 0 sur les deux premières lignes, relais 1 et 2, et 1 sur toutes les autres lignes. Les relais 1 et 2 ne seront donc pas activés, par contre les autres périphériques seront activés.

Après avoir définie et configurée la logique d'alarme, il ne reste plus qu'à programmer la bonne action dans le paramétrage des points, dans notre cas 1 pour les défauts positifs, 2 pour les négatifs et 8 pour les défauts non graves.

<u>Danfoss</u>

PRECISION DES SONDES

THERMISTANCE (SONDE TYPE 1.2.3)

<u>Avantages</u>

- Précision (+/ -) 0.3° sur une plage de –25° à 25°
- La mesure de température n'est pas influencée par la longueur du câble.

Inconvénients

• Elles ne sont pas normalisées.

PT1000 (SONDE AKS 11.12.21)

<u>Avantages</u>

- Sondes normalisées
- Plage importante -50 à 100 ℃
- Grande précision +/- 0.8 K vers 50 ℃, +/- 0.3 K vers 0 ℃

Inconvénients

- Nécessite des appareils de mesure avec une précision de 0.1 °C
- La valeur mesurée est fortement influencée par la résistance du câble

Tableau comparatif des sondes.

	Plage de température	PT 1000	NTC Type 2
Froid Positif	De 0 à 10°C	4 ohms pour 1°C	60 ohms pour 1°C
Froid Négatif	De −20 à −10°C	4 ohms pour 1°C	196 ohms pour 1°C

PRECONISATIONS DE CABLAGE

Si le câble des sondes doit être rallongé, il est impératif de respecter les règles suivantes :

- Thermistance : utiliser du câble de type SYT1, câble téléphonique, de diamètre 9/10 ou supérieur, l'écran du bus devant être raccordé à la terre d'un coté seulement
- PT1000 : utiliser une section de câble suffisamment importante pour limiter l'erreur de lecture :
 - SYT1 en 9/10 : moins de 20m de câble

- SYT1 en 12/10 : moins de 50m de câble
- Câble 1,5 mm² : moins de 80m de câble

En cas d'erreur sur la lecture de la sonde il faut :

- vérifier si le câblage est conforme aux préconisations
- vérifier avec un ohmmètre la valeur de la sonde : tout d'abord directement sur la sonde, puis au niveau du M2 (câble débranché), afin de vérifier si les valeurs lues sont cohérentes (cf. tableau ci dessous). Cette vérification nous permet de savoir si l'erreur vient de la sonde ou de la rallonge

Thermistance

PT1000

°C	Ohm	°C	Ohm
-40	15787	-8	2329
-38	13386	-6	2094
-36	12147	-4	1884
-34	10684	-2	1698
-32	9408	0	1532
-30	8301	2	1383
-28	7340	4	1251
-26	6496	6	1134
-24	5764	8	1028
-22	5117	10	933
-20	4555	12	848
-18	4059	14	772
-16	3622	16	704
-14	3236	18	642
-12	2897	20	586
-10	2595	40	250

C	Ohm	
30	1117	
20	1078	
10	1039	
0	1000	
-10	961	
-20	922	
-30	882	

<u>Janfoss</u>

F.A.Q.

M2 LENT ET PAS D'IMPRESSION

- Vérifier qu'il y ait du papier listing, et qu'il n'y ait pas de bourrage papier
- Vérifier que le levier de sélection du mode d'alimentation papier, le levier se situe sur la gauche de l'imprimante au-dessus de la molette d'avance papier, soit bien positionné sur le papier listing
- Vérifier que l'imprimante ne soit pas en pause, voyant pause éteint, alimentée et raccordée au M2 par un câble parallèle

EN CAS DE COUPURE DE COURANT

Il est possible d'utiliser l'action d'alarme 7 pour signaler une coupure de courant, les périphériques seront alors déclenchés au bout de 10 minutes.

Pour cela il suffit de modifier la logique d'alarme, en paramétrant 1 au lieu de 0, afin d'activer les périphériques que l'on souhaite.

REINITIALISER UN M2

Il peut être nécessaire de réinitialiser un M2, après l'installation d'un modem par exemple.

Pour cela il faut ouvrir le capot de l'appareil, afin d'avoir accès aux bornes de raccordement. A gauche de la borne 1, on va trouver deux picots métalliques, repérés JP4, qu'il faut mettre en court circuit afin de faire redémarrer le M2.

Faire un JP4 n'est pas dangereux pour l'appareil, il n'y a pas de risque de perte de mémoire, sauf si l'appareil est défectueux.

Danfoss n'assume aucune responsabilité quant aux erreurs qui se seraient glissées dans les catalogues, brochures ou autres documentations écrites. Dans un souci constant d'amélioration, Danfoss se réserve le droit d'apporter sans préavis toutes modifications à ses produits, y compris ceux se trouvant déjà en commande, sous réserve, toutefois, que ces modifications n'affectent pas les caractéristiques déjà arrêtées en accord avec le client. Toutes les marques de fabrique de cette documentation sont la propriété des sociétés correspondantes. Danfoss et le logotype Danfoss sont des marques de fabrique de Danfoss A/S. Tous droits réservés.